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Abstract— Using industrial robots to spray structures has
been investigated extensively, however interesting challenges
emerge when using handheld spraying robots. In previous work
we have demonstrated the use of shared control of a handheld
spraying robot to assist a user in a 3D spraying task. In this
paper we demonstrate the use of Augmented Reality Interfaces
to increase the user’s progress and task awareness. We describe
our solutions to challenging calibration issues between the
Microsoft Hololens system and a motion capture system without
the for well defined markers or careful alignment on the part
of the user. Error relative to the motion capture system was
shown to be 10mm after only a 4 second calibration routine.
Secondly we outline a logical approach for visualising liquid
density for an augmented reality spraying task, this system
allows the user to see target regions to complete, areas that are
complete and areas that have been overdosed clearly. Finally
we produced a user study to investigate the level of assistance
that a handheld robot utilising shared control methods should
provide during a spraying task. Using a handheld spraying
robot with a moving spray head did not aid the user much over
simply actuating spray nozzle for them. Compared to manual
control the automatic modes significantly reduced the task load
experienced by the user and significantly increased the quality
of the result of the spraying task, reducing the error by 33-45%.

I. INTRODUCTION

Handheld robots offer the possibility of leveraging the
human user’s ability to move around the environment and
control the progress of the task at hand, whilst allowing the
robot to provide the final actuation to the target and make
use of task specific data. This gives system designers the
opportunity to lower the implementation costs of the robotic
system, as locomotion systems are no longer needed. This
forms a collaborative system, as neither entity is capable
of completing the task without the assistance of the other.
A good example of an application area that could find this
technique useful is that of skin medicine application, where
for certain treatments, accuracy in dosage and in placement
is important. The system presented in this paper is one that is
designed to apply liquid to the surface of a human analogue.
This robot relies on the user for both locomotion and for local
movement to complement it’s single degree of actuation. The
details of the development of the shared control algorithm
are summarised in our previous work [1].

Due to the required shared understanding of the task, the
robotic system must be able to indicate the current status
of the task such that the user can collaborate effectively.
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In our system this is achieved using an augmented reality
(AR) headset, specifically the Hololens by Microsoft. This
is a binocular AR headset, and therefore can indicate 3D
information to the user. In order to visualise holograms
in the users vision, the headset tracks the users position
using a visual odometry system. Whilst this works well for
visualisations where positioning is not critical, it does suffer
from drift as the Hololens adjusts its internal map or loses
trackable features in the scene. Finding a way to quickly
register the shifting Hololens coordinate system with the
ground truth of the motion capture system would be of great
use to system designers. They can make use of the reliability
and the ability to track secondary objects that a camera based
motion capture system offers. We offer our solution to this
problem in Section III.

Fig. 1: The experimental setup used in this work. The
Hololens, spraying robot and mannequin all are tracked with
retro-reflective markers. The visualisation of the spray density
is only visible to the user of the system as it is displayed to
them through the Hololens. The spraying robot’s head can
be actuated up and down to assist with the spraying task.

Finding a way to logically provide task specific information
to the user of a shared control system is critical as the task
cannot be completed without the cooperation of the human
user. We outline a simple colour scheme that we believe to
be a logical way of representing targets, completed areas,
and overdosed areas in a spraying task. This is detailed in
Section IV.



The benefit of a shared control system is that the parts
of the task that require access to rich information or precise
timing can be offloaded to the robotic part of the system.
Providing some assistance is likely to reduce task load on
the user, though knowing exactly how much extra help still
adds utility to the system can allow designers to optimise
other aspects of the system, such as size or cost. In Section V
we evaluate three levels of assistance for a spraying task,
considering the users performance at applying liquid, the
speed in which they do the task and their subjective task
loading.

II. BACKGROUND

Here we will summarise some of the key works on which
this one was based. There are three primary areas of work
that each relate to one contribution of this paper. Firstly,
performing calibration of augmented reality devices. Secondly,
methods of visualising task progress in a spraying task. Lastly,
work relating to assistance in shared control handheld robots.

A. Calibrating Augmented Reality Devices

Tuceryan et al. [2] proposed a system of calibration called
‘Single Point Active Alignment Method’ or SPAAM. In
their system the position of the augmented reality headset is
reported by a magnetic tracking system, the offset between
the magnetic marker affixed to the headset and the optical
centre of each eye is not known an is to be calibrated. The
offset between the magnetic tracking system and the world
coordinate system is analogous to the Hololens world frame
and the world coordinate system in this work. The calibration
of the tracker system was described in their previous work
[3], they used a pointer object that was tracked using the
same magnetic system to index known locations in the world
coordinate system. The offset between the eye and the headset
marker was found by having the user align a single known
location in the environment up with a cursor that is displayed
through the headset.

Tuceryat et al’s approach seems to be simple and effective,
though is not directly applicable to the the hardware we
are using. The primary problem is that the high frequency
and low latency measurement of the Hololens is calculated
internally, and there is no way to have a secondary object in
the same frame used for indexing the world coordinate frame.
In their work the headset and the wand were tracked with the
same system, allowing them to match real world points with
hologram locations directly. We would have to use the wand
to index virtual images, which is difficult to do accurately.
Also there is no attempt at recalculating any of the offsets in
an online manner, due to the magnetic tracker’s coordinate
system not shifting over time, however the Hololens does
shift it’s coordinate system due to adjustments in the map
used for the visual odometry.

Gilson et al [4] take a different approach that does not
involve the user performing manual alignment tasks. They
mount a camera inside the head mounted display such that it
can see through the display into the scene. They can then put
a motion tracked object into the scene and locate it also in

the view of the camera. Then they can display a know grid
visualisation on the head mounted display, and find that in
the camera view. By finding correspondence between these
two measurements the position of the marker attached to the
head mounted display can be found relative to the optical
centre of the eye. This approach has the advantage that it
does not rely on the user to perform any alignment task,
though at the cost of requiring a fairly elaborate calibration
setup. A mannequin head mounted with cameras, special
motion tracked and optically marked calibration boards add
significantly to the complexity. Further it is likely that the
mounting of the cameras in the head will effect the calibration,
and should at least somewhat match the position of the end
users eyes.

B. Visualising Task Progress in Augmented Reality

The set of work by Gregg-Smith et al [5, 6] is a key pre-
cursor to this work, as it investigates both augmented/virtual
reality displays and the utility of handheld robotics. Their
investigation into spacial guidance [5] compares 4 methods of
user feedback, using both a handheld robot and a non-actuated
wand. The feedback methods include a 7 inch display, a virtual
reality system, a monocular augmented reality system and a
gesture based method where the handheld robot points to it’s
next waypoint. This final method was not implemented on the
wand. They found that the actuation of the handheld robot
helped the users perform the 5 degree of freedom positioning
task much faster than using just the wand. Though they also
found that while visual feedback was better than the gesturing,
none of three methods was significantly better than the other.
They comment that a significant issue with their monocular
augmented reality display was the lack of depth perception
giving the users difficulty. We wish to address this criticism
by using a binocular augmented reality system.

One of the primary conclusions of Gregg-Smith et al was
that perhaps only very rough feedback is necessary for the
user to complete their task, and they conclude that perhaps
lower quality systems than theirs could be viable for real
world use cases.

A significant difference between this work and that of
Gregg-Smith et al is that their handheld robot had sufficient
degrees of freedom to complete the 5 degree of freedom
task independently, and only required the user as transport
to the area of interest. Our handheld robot is much less
capable, having only one degree of freedom and the task is
more nuanced, as such the level of cooperation with the user
should be much higher, and quality of feedback is likely to
be significant.

Yang et al. [7] designed a similar system for training
technicians to use a spray gun to paint ship parts. They
experimented with a large monitor emulating a surface, and
a head mounted display to allow 3D manoeuvring during the
painting task. They discuss the importance of having access
to the paint thickness measurement in judging the quality
of the trainees work, though they do not describe how, if at
all, they display this to the user mid task. Further their work
was for training purposes and as such some of the techniques



used would not be appropriate if the guns were loaded with
paint. For example using the monitor as a method of feedback
emulates spraying through a window onto a surface, if the
surface was contoured then the spray paint landing on the
screen would not match that landing on the simulated 3D
geometry. The head mounted display does not suffer from
this problem however.

Kim et al. [8] developed a system specifically to demon-
strate the thickness of paint coating to a user who is training
in a spray painting task. They present 3 methods for giving
feedback to the user regarding paint thickness: A numerical
readout of the thickness of paint at the ray cast directly out
of the spray gun; A graph showing the paint thickness along
a line horizontal to the ray intersection; and 2D visualisation
placed on the object itself. They give no in depth information
regarding the 2D visualisation, though it seems to be a single
colour modulated by the thickness, and has no indication
of the required paint thickness at different locations. This is
likely due to the application that they were targeting requiring
uniform painting on all surfaces of and object.

C. Assistance Levels in Handheld Robots

A key piece of work was presented by Gregg-Smith et al.
[9], this work presents 3 levels of assistance for a placement
task and a simplified painting task. Manual mode allows the
user full control of the trigger, which either ‘sprays’ paint
or applies suction to the picking task, further there is no
automatic articulation of the head. Semi autonomous mode
actuates the trigger for the tasks automatically, though the
head is still not articulated. Autonomous mode automates
both the trigger and the head articulation, the head moves to
help the user complete the task. They found that the larger
amount of assistance reduced the amount of task load, as
defined by the NASA TLX survey [10], especially in the
painting task. They also measured a significant reduction in
task completion time, again especially so for the painting
task. Interestingly the effects were not as pronounced on the
placement task, which seemed to be the one where even the
most automated mode still relied on the user to be quite
involved in the task.

In this work we are following a similar paradigm as Gregg-
Smith et al, though we are extending the line of enquiry
to a task that is closer to a realistic task, in our case the
paint behaves realistically, and perfectly meeting the dose is
impossible. Further the robot that we are using is significantly
simpler, leaving more of the task to the user, and the feedback
via the headset necessarily contains richer information that
that in [5].

III. FINDING CORRESPONDENCE BETWEEN HOLOLENS
FRAME AND WORLD FRAME

Due to there being no well defined datum to use as a
reference on the Microsoft Hololens we do not know the
location of any of its features in 3D. Therefore any marker
attached to it has to be assumed to be arbitrary, containing
no helpful information to find the points of interest on the
headset.

The Hololens does provide its location within it’s own
coordinate frame that was generated with visual odometry.
The challenge is the calculate the offset between the Hololens
world frame and the global world frame, in our case defined
by a motion capture system. This section is not necessary
for the understanding of the user study investigating shared
control assistance level in Section V, though at the time of
writing is necessary for it’s implementation.

A. Method

In contrast to the techniques introduced in Section II-A
the presented method does not rely on user alignment tasks
or on well defined marker setups, though it must be noted
the the difference in aims of the calibrations. We will be
implicitly relying on the built in calibration of the Hololens
and the inter-pupillary distance calibration routine provided
by Microsoft, which can be replaced with a manual inter-
pupillary distance measurement. Also the other methods of
calibration can correct for some other modes of error such
as display distortion, which we will take for granted.

In order for the visualisation to be rendered smoothly to the
users, the Hololens calculates the movement of the users head
in real time on the headset itself. Whilst we can override
this, and set the users virtual position based on external
measurements, we have found that the additional latency
makes for an unacceptable experience. Also if tracking from
an external system is lost, such as that from our marker
based motion capture system the user would notice the lack
of position updates. Therefore we propose a system that only
acts on changing the location of the Hololens origin point,
then allows the Hololens to maintain high frequency updates
of the the users position in that frame.

In order to gain information about the Hololens’ location
relative to the world frame, defined by the motion capture
system, we attached a rigid body of reflective markers to the
headset. Due to the fact that the optical centre of the hololens
depends on the particular calibration to the current user we
cannot easily know the offset between the attached marker
and the current optical frame. Thus we have two unknowns
in the system, offset between motion tracking origin and
Hololens world origin and the offset between the headset
marker position and the optical centre of the Hololens. With
two unknowns it is impossible to solve for both with only
one measurement, and thus to discover these unknowns we
optimise for them over a time series of observations. Further
we must continually adjust for the drift introduced by the
Hololens visual odometry system.

We can formalise Figure 2 using matrix equations where
each matrix is representing a rigid rotation and translation. In
Equation 1 Tho is a rigid transform from the Hololens frame
to the motion capture frame, Tro is the rigid transform that
describes the offset between the marker on the headset and the
optical centre of the headset. Ph is the pose of the Hololens
as reported by the Hololens’s internal visual odometry, in
it’s own frame of reference. Pr is the measured pose of the
marker attached to the Hololens in the motion capture frame.
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Fig. 2: Summary of the transforms involved. Red: Hololens
position in Hololens frame of reference. Green: Rigid body
marker position in the motion capture frame of reference.
Pink: marker offset from optical centre. Orange: transform
between Hololens frame of reference and the motion capture
frame of reference. The ‘1’ indicates that these are matched
measurements, the other pairs are matched but are not
numbered for clarity. It can be seen that there is one transform
that will align the Hololens reported values (red) with the
motion capture reported values (green) in such a way that
there is a unique transform after this coordinate shift that
links the optical centre and the headset mounted marker. This
unique transform describes the transform between the marker
on the Hololens and the optical centre of the Hololens.

ThoPh = PrTro (1)

Tho, Tro, Ph, Pr ∈ R4×4 (2)

It is important to note that given one observation of Ph

and Pr finding the appropriate transforms is impossible as
there are infinite solutions. Therefore any solution must solve
over a time series of such observations. We achieved this by
forming an optimisation that was solved numerically, using a
method leveraging singular value decomposition which allows
for fast convergence of the optimisation. This method was
described in [Ho2013].

First the centroids were found by averaging the translations
defined by the poses measured in each frame.

Ch =
1

N

N−1∑
i=0

trans(P i
h) (3)

Cr =
1

N

N−1∑
i=0

trans(P i
r) (4)

Next the relative rotation to best align the data sets was
found, here R is a rotation matrix. U ,S,V are the typical
outputs of the singular value decomposition (SVD).

H =

N−1∑
i=0

(P i
h − Ch)(P

i
r − Cr)

T (5)

[U, S, V ] = svd(H) (6)

R = UV T (7)

Using the offset between the centroids Ch and Cr, and the
rotation matrix we now have the two series of poses roughly
aligned, this gives us a starting point for the transform Tho.
Next we use a numerical optimisation library to minimise
Equation 8, which can be thought of as a circular set of
transforms, if the two transforms being calculated are correct
applying them in this order should give the identity matrix.

min
Tro,Tho

N−1∑
i=0

P i
rTroP

i
h

−1
Tho

−1− I (8)

Now we can apply the transform Tho
−1 to an object we would

like to render and it will appear in the correct place within
the motion capture arena. We can make the assumption that
the marker offset transform will remain static for each use
of the system. Importantly however, moving around will
cause the Hololens’s visual odometry to drift over time, or a
loss of tracking could be slow to recover from. In this case,
objects that were previously well registered to the real world
environment will drift away from their intended position.
Therefore we must continue to calculate the offset between
the Hololens world and the motion capture world (Tho).

Now that there is only one unknown, Tho, we can solve
for this using only one data point.

Tho = Ph
−1
PrTro (9)

This is not advised however as the noise in measuring Pr,
the marker in the motion capture arena, causes large jagged
movements of all rendered items. This is especially a problem
if the noise is primarily in the rotation of the marker. Therefore
it is useful to use a method that smooths the result of
this calculation. A simple infinite impulse response filter
is adequate for this task.

tfiltered = (1− f)told + ftnew (10)

Qfiltered = slerp(Qold, Qnew, f) (11)

Where t represents the translation of the transform and Q
represents the rotation quaternion. f represents the filtering
coefficient, nominally f = 0.01, smaller f leads to smoother
filtering with more latency. Slerp is the spherical linear
interpolation between the given quaternions, where f denotes
the interpolation coefficient.

B. Validation

To collect the data for Ph and Pr their timestamps are
matched and a hold-off of 5mm is used. The hold-off
represents the minimum distance required to move from
the previous sample before a new sample is collected. To the
user this sequence is a short walk around the motion capture
arena whilst rotating their head, the time of which depends
on the number of samples required, 500 samples takes around
4 seconds to collect.

Unfortunately due to the nature of this calibration it is
difficult to demonstrate the accuracy of the alignment without
experiencing it first hand. As such it is necessary to have a
human in the testing loop, and the results will be somewhat



dependant on their perceptions and care in completing the
tasks.

To validate the calibration the user must place a known
model such that it lines up well with the rendering that
they see through the augmented reality system. From each
placement iteration we will be able to collect the true location
of the placed object, as measured by the motion capture
system and the intended position of the hologram. Ideally the
location that the user places the object exactly lines up with
where the hologram was intended to be rendered, relative to
the real world.

C. Results

The method described previously was tested for 10 iter-
ations using different numbers of calibration samples. The
results can be seen in Figure 3. After about 500 samples there
is little increase in accuracy, and the best achieved accuracy
is about 10mm position error and 20mRad angular offset
(1.15 degrees). It is likely that the users ability to accurately
perceive the depth information and manoeuvre the real world
tracked object sets a floor on the error.
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Fig. 3: The error between the measured location of a motion
tracked marker and intended position against length of
calibration series. Error bars represent the standard deviation
in the measurement. N=10 for each experiment. After 500
samples there is no discernible improvement.

IV. AUGMENTED REALITY FEEDBACK FOR SPRAYING
TASK

Now that we have a system where physical objects can be
tracked reliably within the same frame of reference as the
Hololens location, we can visualise interactive tasks to the
user. In this section we will use this system to investigate
an augmented reality spraying task. In order to complete a
painting task with a handheld robot there needs to be some
means of feedback to the user, otherwise they will have little
idea of what areas still need further attention. With the cost
of augmented reality and virtual reality and their quality
reaching mass market standards, these technologies are a
viable alternative to monitors for feedback.

A. Proposed Visualisation

Drawing on the work of Kim et al. [8] we decided that
a 2D representation mapped directly to the surface of the
3D object using augmented reality was the most intuitive.
With the task we present there is an additional complication,
there is no implication that the paint should be evenly
applied everywhere, there will instead be target regions. This
means we must not only feedback what the user has already
completed but must also distinguish between areas that still
need to be painted and areas that should never be painted.
This visualisation should also be natural to understand.

We propose that regions that require spraying, target
regions, should be blue. As the area becomes filled this will
transition to green. If the area becomes overfilled then the
area will transition through a gradient to red. This is shown,
along with the indication of reward in Figure 4. Traditionally
green is seen as ‘good’ and red as ‘bad’, therefore the user
will see that their job is to make all blue areas green, whilst
making as few areas red as possible. Areas that were never
intended to receive spray start white, due to this being the
colour of the real world model they are working with, and will
shift through a gradient to red as the area receives more spray.
Full red in this case would be reached when the overdosing
is in proportion the the typical correct dose within the target
regions.
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Fig. 4: The colour scheme for a region that requires spraying.
Blue would indicate to the user that they should spray the
area more, green that the area is correctly sprayed and red that
it has become over sprayed. The vertical height in the image
refers to the reward that is applied to the whole spraying job
at this location, when the score becomes negative the colour
will stay red.

V. CONTRASTING DIFFERENT LEVELS OF ROBOTIC
ASSISTANCE IN SPRAYING TASK

Now that the Hololens, robotic spray gun and target
mannequin can be located within the same coordinate system
and we have outlined a sensible visualisation scheme, robotic
spraying tasks can now be carried out in augmented reality.
With our system we wish to investigate the extent to which
robotic assistance could help in a 3D spraying task. Using the
feedback mechanisms described in Section IV the user would
have access to rich task specific information. This knowledge
makes it possible to form a shared control behaviour with
the robot, this could potentially allow the robot to be less
complicated as the user can take control of some elements of



the task and the robot others. In our case the human will be
directing the high level flow of the task and the locomotion
of the robot by manoeuvring it to the next target region.

A. Task Outline

The task that the user will be attempting to complete will
be to spray virtual liquid onto a mannequin on the zones
indicated to them on the augmented reality headset. Three
modes will be tested, in a similar paradigm to Greg-Smith et
al [9]. Manual gives the user full control of the trigger, which
releases the virtual paint from the nozzle, and nozzle remains
stationary on the robot. Semi automatic mode activates the
trigger on the users behalf when the simulation, described in
[1], finds that spraying will increase the task score, as defined
in Section IV-A. Finally automatic mode will also activate
the trigger, though it will have the capability to slide the
nozzle up and down a short gantry mounted on the handheld
robot. The movement of the nozzle is calculated in a receding
horizon manner using the current velocity and position to
predict future positions over the next one second. This is
described fully in our previous work [1].

The user will partake in 3 painting experiments per
assistance level. After each assistance level they complete
the NASA TLX survey [10] using the official NASA IPad
application. They will be wearing the Microsoft Hololens
which will overlay on the mannequin the target areas and
their current paint status as described in Section IV-A, the
setup can be seen in Figure 1. The user will communicate
to the assistant when they feel that they can no longer make
reasonable progress on the task. By the end of the experiment
they will have filled the 3 different target patterns with each
of the three assistance levels. Before each new mode the
users were given the opportunity to test the mode and to ask
any clarifying questions that they had.

B. Results

There are three key areas of measurement that we will
present here, NASA TLX [10] that indicate task load, task
completion time, and accuracy of paint placement. In total
there were 18 participants, 4 female and 14 male, aged
between 20 and 34.

1) NASA TLX: It can be seen from Figure 5a there is
a marked decrease in the median task load as the level
of automation increases from 63.5 in manual to 47.835 in
automatic mode. The factors involved in task load are shown
in Figure 5b, over all there is no significant change in the
relative importance of each factor across the experiments.
Though the median of the task load decreased, as automation
increased, the automated modes were not favoured by all,
in fact both the highest and the lowest task load score was
registered for the automatic mode.

2) Completion Time: Across nearly all of the trials manual
was the quickest mode, with little difference between the
automatic modes. Though this does require some careful
qualification. Due to the nature of an automatic mode not
allowing the participant to make a mistake, users often
become quite perfectionist, hunting for the smallest area of
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(a) The combined TLX scores by mode.
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(b) The factor weighting by mode.

Fig. 5: A summary of the NASA TLX scores, it can be seen
that increasing the assistance level reduces task load, though
does not change the relative factor importance much.

improvement. In the manual mode however they get nervous
that they will ruin what they have achieved and may stop early
to avoid incurring negative scores due to overdosed regions.
This effect could likely be removed easily by instructing the
user the level of coverage the task requires, such that they
do not waste their time, and further practice to remove their
nerves in manual mode. To help remove this effect in this
study, we will look to see the times taken to get from 10%
to 90% of final coverage for that attempt, to remove the
thinking time at the beginning and the hunting behaviour
observed in the automatic modes at the end. The results can
be seen in Figure 6, the time taken in the different modes
did not vary significantly. Only in round 2 was there any
appreciable difference, though this is explainable by the fact
the perfectionist attitude of the users is applied per sub-patch,
which can be seen in Figure 9, which is not removed by the
filtering described above.

3) Accuracy: To effectively compare performance across
trials the mean squared error (MSE) per pixel is a good
measure as it is agnostic to the dose level (which happens
to be constant) and the total area required to be covered. As
can be seen from Figure 7 the MSE is best in the automatic
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Fig. 6: The time to complete the spraying task. Time is
taken from the interval between 10% and 90% of the
maximum score for that run to remove unproductive time at
the beginning and end of each run. The error bars represent
the standard error of the mean (SEM). There is little difference
in completion time with different assistance levels.

modes and worst in manual mode. There is between a 33%
and 45% reduction in MSE between the automatic modes
and manual mode. There is no significant difference between
the automatic modes. In Figure 8 you should be able to
notice that in manual mode there is significant amounts of
paint outside of the intended boundary, whereas the automatic
modes have a similar kind of paint distribution.
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Fig. 7: The Mean Squared Error (MSE) per pixel in the
bounding box surrounding the target patch. It can be seen
that the manual attempts are much more error prone, also the
user variation is large with the manual mode, and small with
the automatic modes. Variation between rounds is also small
in the automatic modes. Error bars represent the Standard
Error of the Mean (SEM).

VI. CONCLUSION

In this work we demonstrated three contributions. Firstly we
demonstrated a method of calibrating the Hololens’s internal
coordinate system to a frame defined by a motion capture

(a) Typical result of
manual spraying

(b) Typical result of
semi auto spraying

(c) Typical result of
auto spraying

Fig. 8: A typical example of the 3 modes used on a given
target. Green sections are well painted, blue is in need of
paint, and red areas are over painted. It can be seen that in
manual mode there is significant over spraying.

(a) Target 0 (b) Target 1 (c) Target 2

Fig. 9: These were the three patterns the users were asked to
spray in each mode. 9a is designed to test area fill, 9b for
detailed strips, and 9c for small isolated areas. Further the
boundary to area ration increases through the levels

system. This method does not require well defined markers
or any careful interaction from the user. We showed that
the error compared to the motion capture system can be
as low as 10mm and that a calibration taking 4 seconds is
enough to reach this. This kind of calibration could be useful
when a researcher has a system that reports it’s location
in it’s own coordinate frame and there is no well defined
datum to help convert this to a motion capture or other
global frame. Our second contribution was outlining a logical
system for visualising liquid density in an augmented reality
spraying task. This was implemented on with the Microsoft
Hololens such that users can see target regions to spray on a
mannequin that is tracked by the motion capture system. Our
third contribution is to analyse which level of assistance is best
used in the augmented reality spraying task. We demonstrated
that whilst a pure manual spray gun can often be quicker, most
users report that the automatic modes put them under less load.
Further we have showed that the performance of the users
in the spraying task was much improved with the automatic
modes, with the mean square error being 33-45% less for
the automatic modes compared to the manual mode. Though
automatic and semi-automatic mode performed similarly for



the most part the automatic version is significantly more
complicated, which for this particular use case is unlikely to
be worth while given the marginal benefits.
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